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Abstract. We present a simple onedimensional microscopic model for the propagation of 
a detonation which is specially adapfed to solids. It couples a non-linear equation for the 
dynamics of the clystal lattice to an equation describing the molecular dissociations. Analylical 
calculations in the continuum limit and numerical solutions of the discrete model show that it 
yields the essential feafures of a detonation wave. Moreover, the model exhibits the existence 
of two detonation repimes, in agreement with recent molecular dynamics simulations. 

1. Introduction 

Fundamental studies of detonations are interesting for two reasons: first, because extreme 
conditions prevail in a detonation wave, it can be used to probe interatomic forces in 
regions which are hardly accessible by any other means; second, the detonation couples 
a shock wave and a chemical reaction, i.e. it involves mechano-chemistry about which 
very little is known. However, while the understanding of detonations in gases or fluids 
has made significant progress in the last decade, the microscopic structure of detonations 
in solids is far from being understood [l]. As direct observations are difficult due to 
the space and time scales involved, molecular dynamics simulations have been used to 
determine the microscopic structure of detonation waves in crystals [Z, 3,5581. However, 
these simulations are comparable to an experiment in the sense that we can only use them 
to observe the properties of a given system under different conditions. Although we have 
a much better control over the system than in a real experiment. and although we can 
vary model parameters to analyse the mechanisms of the detonation. the obstacle to a 
fundamental understanding is that we are still dealing with a very complicated system. In a 
'ypical simulation, an atom is subjected to tens of interactions from its neighbours. This is 
why simple one-dimensional models restricted to the basic mechanisms of the detonation, 
namely the propagation of a shock coupled to a chemical reaction, are useful. Many such 
models of detonations have already been proposed and they have reached a level where 
they describe not only the propagating front but also its instabilities, oscillations, etc [9]. 
However they treat the case of gases or fluids where hydrodynamics and reaction diffusion 
equations provide a good description. The case of a solid is fundamentally different both 
from the point of view of the chemistry and of the shock wave, because, in the vicinity 
of the detonation front, there is no atomic diffusion and it is not possible to represent the 
motions of the lattice by a heat diffusion equation which is of parabolic type. Instead an 
hyperbolic equation describing wave propagation is required. Moreover, as the shock front 
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is very narrow on the molecular scale [8], a model which preserves the discreteness of the 
lattice is important. 

We present here a simple model for the propagation of a detonation which takes into 
account the specificity of the solid state. The motivation to establish such a model is that, i n  
its design, we make assumptions on the mechanisms which dominate the propagation of the 
detonation, and then, if the model can reproduce satisfactorily the molecular dynamics and 
experimental results, the validity of these assumptions is confirmed, and we have gained 
some understanding of the detonation process. The aim of our approach is not to propose 
a quantitative analysis of the vast number of experimental data which are available on 
solid detonations, but to discuss a possible path toward a fundamental understanding of the 
process. This is why the model has been kept as simple as possible, and. in particular, one 
dimensional. 

P Maffre and M Peyrard 

2. Design of the one-dimensional model 

The essence of the detonation process is the coupled propagation of a shock wave and a 
chemical reaction which assist each other through their coupling. Therefore the model must 
include these two aspects. We have chosen for each of them a description which is as 
simple as possible, but contains the fundamental physical properties. We consider a lattice 
made of molecules which can undergo an exothermal chemical reaction. We start from well 
known models for the propagation of a shock wave and a chemical reaction, which are then 
modified to take into account the specificity of the detonation in a solid, and to introduce 
the coupling between the shock and the reaction. 

2.1. Model for the shock wave 

We restrict our attention to plane waves in which the wave plane is orthogonal to the 
direction of the propagation of the detonation. This assumption reduces the lattice model 
to a one-dimensional problem, so that the lattice can be viewed as a simple chain of atoms 
of mass m. Due to the very large lattice distortions which are observed in a detonation 
wave where the average volume of unit cell particles can be reduced to less than 60% of 
its equilibrium value, the interaction potential between the atoms cannot ignore the non- 
linearity. We have considered the first non-linear term in the expansion of the potential 
around its minimum by introducing cubic anharmonicity in the potential 

V ( r )  = $GrZ + i A r 3  (with A < 0) (1) 

where r is the relative distance of the atoms which interact, If we denote by Ri(t) the 
displacement of atom i with respect to its equilibrium position, the Hamiltonian of the 
lattice is 

1 dRi 
= - 2 (-) dt 4- V(R,+,  - Ri)  

i 

so that the equation of motion of atom i is 

dz Ri 
m- = G(Ri+l - 2Ri + Ri-1) + A [ (R i+ i  - R,)’ - (Ri - Ri-i)’] I (3) 

Although no restriction is imposed on the amplitude of the displacements which can 
be very large and thus strongly excite the non-linearities, such a model assumes that the 
sequence of the atoms in the lattice (determined by index i) is not destroyed. Therefore the 

dr2 
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model does not describe the gas phase which is well behind the shock on the atomic scale. 
We are interested here in modelling the early stage of the chemical reactions which occur 
in the immediate vicinity or even within the shock front [3, 41, i.e. in a region where the 
lattice stmcture, although it is extremely distorted, is not completely destroyed. 

It is interesting to introduce the relative stretching of a bond as U, = (Ri  - Rj-l)/a, 
where a is the equilibrium distance between the atoms because, in some limits, it leads to 
equations having analytical solutions. The equation of motion of the lattice can be written 
as 

Such a discrete model has supersonic soliton-like solutions which provide an approximate 
description of the shock wave [IO]. Since the numerical solutions show that, in solid phase 
detonations, the width of the shock front can be as narrow as a few lattice spacings, the 
discrete description provided by equation (4) is essential to represent accurately the shock, 
but no analytical solution of this coupled set of non-linear differential equations is known. 
An approximate expression, which is qualitatively correct, can be obtained in the continuum 
limit where U ; ( t )  --t u ( x .  t ) .  Keeping only the leading non-linear and dispersive terms, 
equation (4) reduces to the well known Boussinesq equation 

(5) 

where the subscripts denote partial derivatives and CO” = G a 2 / m ,  p = Aa’fm, and 
h = Ga4/12m. This equation has the soliton solution 

2 2 
utt - couxx - P ( U  )ir - huxxxx = 0 

with amplitude A0 = 3[h(u2 -c;)]’/’ /[pI and width L = Z[h / (u2  -c:)]]/~. The continuum 
limit expression r(x, t )  of the atomic displacements R ; ( t )  is obtained from 

lim r ( x ,  t )  = 0 (no displacement ahead of the shock) 

lim rr(x.  t) = 0 (steady state far from the shock) 
r++m 

x-*m 

which give 

- (7) 

This kink-shaped solution is in qualitative agreement with our numerical calculations. In 
particular, molecular dynamics shows that faster shocks are narrower in agreement with the 
expression for L. 

To complete the lattice model for the detonation wave, one must however add two 
physical phenomena to equation (3). The first one is the coupling with the chemical reaction, 
which will be discussed below, and the second one is the coupling with other degrees of 
freedom in the lattice, in particular with transverse motions. This coupling is responsible 
for an energy transfer to modes which are not explicitly included in the model, causing a 
damping of the shock wave. In our approach, this effect is modelled by a phenomenological 
damping term -ydRi/dt added to the RHS of equation (3). 
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2.2. Model for the chemical reaction 

The chemical model must describe the kinetics of the dissociation of the molecules. As €or 
the lattice model it is derived from a well known model for the propagation of a chemical 
reaction which will be suitably modified to take into account the peculiarity of the solid 
phase detonation and introduce the coupling with the shock wave. We restrict our attention 
to plane waves, so that we consider again a one-dimensional model. We denote by @ i ( t )  
(or @ ( x ,  t )  in the continuum limit) the portion of the molecules which are dissociated in the 
ith column of the lattice (or at position x ) .  Ahead of the reaction front @ j  = 0 while far 
behind the front, Qi = 1. 

As a basis for the chemical model we have chosen the model of Schlogl and Berry 
[ I l l .  This is a model for chemical reactions in a fluid phase, where the evolution of @ is 
determined for one part by the rate function which describes the kinetics of the chemical 
reactions involved, and for a second part by the diffusion of the species according to the 
equation 
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where K and q are two constants which are determined by the kinetic constants of the 
chemical reactions, and d is the diffusion coefficient of the species. For 9 Q 0.5, the model 
has a solution which describes the propagation of a reaction front of width LR at constant 
speed VR according to the equation 

= ( 1  + exp [ (x  - URt)/LR])-I  (9) 
with U R  = -(I - Zq), and LR = m. This solution has a kink shape, with 
4 -+ 0 for x -+ too, corresponding to the unreacted region ahead of the shock, and @ + 1 
for x + --W. corresponding to the fully reacted region behind it. This model can describe, 
for instance, the propagation of a combustion in a fluid and is consequently well adapted 
as a starting point to describe the chemical reaction in the detonation wave. 

2.3. Model for the detonation wave 

In order to derive a model for the propagation of a detonation, we need to modify and 
complete the models described above for a shock wave and a reaction wave propagating 
independently of each other, in order to introduce the coupling between the two processes 
which is the essence of the detonation. 

The local effect of the chemical reaction to sustain the shock wave takes place in the 
region where the energy is released, i.e. within the reaction front. Ahead of the front the 
molecules have not yet released their energy, while behind it the energy release is over. 
Consequently the effect of the reaction on the dynamics of the atoms can be represented by 
addinz to equation (3) a term - - ( ~ ( @ j  - @,-,)/a which is proportional to the slope of the 
reaction front around site i. The negative sign is necessaty so that the reaction front, which 
has a negative slope (d@/dx c 0), sustains the shock by giving a positive acceleration to 
the atoms, and the constant 01 determines the strength of the coupling between the reaction 
and the shock, i.e. the efficiency of the reaction to sustain the shock. 

In order to describe a solid phase detonation, equation (8) for the chemical reaction 
must be modified because, in the solid, there is no diffusion of the species. The term 
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a2$/ax2 must be removed from the equation. The role of this term was to introduce a 
coupling between different spatial points in the system. In the case of a detonation, the 
spatial coupling is due to the propagation of the shack in the lattice, which is the mechanism 
by which ‘information’ is transmitted from one point to another. The shock can sustain 
the detonation in two ways. Firstly, if the kinetics of the dissociation is strongly pressure 
dependent, the reaction rate can be enhanced in the high-pressure domain behind the shock 
front. Secondly, the shock can have a more direct effect because, inside the shock front, 
the molecular lattice suffers very violent distortions which are responsible for strong forces 
acting on the molecules, which can assist, or even cause, their dissociation. The molecular 
dynamics results suggest that, in a solid phase, this second mechanism is the dominant 
one, in agreement with the conclusions reached by Dremin and co-worker and Walker from 
many experimental studies [3,4]. Although the first mechanism could be introduced in the 
model by using a kinetic constant K which is a function of the atomic distance Rj - Ri-1, 

we have chosen to include only the second mechanism in the model to reduce the number 
of free parameters and to allow for some analytical analysis. Consequently, equation (8) is 
modified by replacing the diffusion term by -D(R, - R j - l ) / a  which introduces a direct 
effect of the shock front on the reaction rate. The coupled equations for the atomic motions 
and the chemical reaction are consequently written as 

m- = G(R;+l - 2Ri + Ri-1) + A [(Rj+l - d2R; 
- (Rj - Rt-,)’] dt2 

, .--,\., dt a 
These equations can also be written in terms of the relative atomic displacements U; = 
Ri - Ri-I as 

3. Properties of the model 

3.1. Limir of slow reaction kinetics 

In the continuum limit, equations ( l l a ,  b) become 

In these equations, only the leading derivatives in @ have been conserved. In spite of this 
simplification, we have not been able to solve this coupled system of equations in the general 
case, but a solution can be obtained in the limit KID << 1 ,  which amounts to assuming that 
the kinetics is slow and that the chemical dissociations are completely driven by the shock. 
With these approximations, equation (126) gives U N D-l@t ,  and, in a steady detonation 
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propagating at speed U, where the solution has a permanent profile, & = -U$, allows us 
to eliminate Q from equation (12a) to obtain 
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If the velocity U is such that - 

the right-hand side vanishes and equation (13) reduces to the Boussinesq equation written 
for a permanent profile solution, which has a soliton solution. Therefore for this particular 
velocity t i c ,  the system sustains a detonation wave which combines a shock and a chemical 
reaction propagating at the same speed. The stability of this solution can be analysed by 
considering the case of a detonation propagating at a velocity close, but not equal, to U,. 
Let us assume U = u,(l + U ) ,  with a << I .  Using again U rr D-'Q, from equation (I%), 
equation (12a) becomes 

where the permanent profile assumption has been used for U in the RHS which is a small 
perturbative term, and the calculations are limited to order unity in a. 

In order to study the effect of the perturbation due to the non- vanishing RHS of equation 
(15), it is convenient to consider the limit where it reduces to a Korteweg de Vries equation to 
take advantage of the well known perturbation methods for KDV [12]. This is accomplished 
by changing to the frame moving at the sound speed CO by the introduction of the variables e = x - cof and 'c = f. In this frame the time evolution of the solution can be assumed to 
be small enough so that the second-order time derivative in r can be neglected. With these 
assumptions, and after one space integration with vanishing boundary conditions at infinity 
adapted to a solitary wave, equation (15) becomes 

For U > 0 (U  > uc), a perturbation of the KDV equation proportional to U causes an 
exponential decay of the amplitude and velocity of the soliton [U], while for U < 0 (U > uc) 
the perturbation causes an exponential growth of its amplitude and speed. Consequently, 
the calculation indicates that a detonation propagating at velocity U, is stable. A faster 
detonation is expected to slow down gradually to U, where the perturbation vanishes, while 
a slower one should accelerate to U,. 

Of course these conclusions are valid only for a small range of velocities around U,, 
and they are derived in the continuum limit, which is only a rough approximation for a 
detonation wave. Therefore they must be checked directly by numerical calculations, This 
has been done by solving the discrete set of equations (1 la,  b) with an initial condition which 
is obtained from the continuum limit approximation. The solution for U is obtained from 
equation (13) and Q i s  derived from equation (9) which has qualitatively the correct shape. 
Figure 1 shows the time evolution of the velocity of the detonation wave for various initial 
velocities U. The model parameters used in this calculation are K = 0.01 TU-!, D = 1  TU-^, 
9 = 0.25, LY = 0.02 eV, y = 0.01 m u  mili-' , so that the approximation K I D  << 1 is 
verified (OUT time-unit 'TU' is equal to lO-I4s and 'amu' designates the atomic mass unit). 
The characteristic velocity corresponding to these parameters is U, = 1.414 A TU-'. Since 
the initial condition is derived in the continuum limit, it is not an exact solution of the 
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discrete equations of motions and it emits transients which propagate at the speed of sound 
and thus stay behind the detonation wave. To check that the detonation wave reaches a 
permanent profile steady state, these transients are removed from the solution when they 
are sufficiently separated from the front. Then, when the initial speed is not close to y. 
the detonation wave emits other small-amplitude waves as it speeds up or slows down 
towards uc. After some time the solution is 'cleaned' a second time by removing these 
small-amplitude waves and we follow its evolution to check its stability. Figure 1 shows 
that all the initial conditions with initial velocities in the domain 1.01 < U < 1.60 converge 
to a final velocity U, = 1.36 8, Tu-' which is in very good agreement with the theoretical 
velocity v,. This result shows that our simple detonation model has a well defined detonation 
speed, which does not depend on the initial condition, as found in experiments. A better 
test of the stability of the solution is to measure the energy of the detonation wave in a 
region which contains the shock and reaction fronts and propagates with them. Figure 2 
shows the time evolution of the energy of the 100 cells which contain the fronts for the 
various initial conditions shown in figure 1. It demonstrates the very good stability of the 
detonation over long periods. Other parameter sets confirm the validity of the analytical 
analysis to determine the detonation velocity to a good accuracy. The theoretical values 
overestimate slightly the equilibrium values found in the numerical calculations because 
they do not take into account properly the effects of the chemical kinetics which is simply 
ignored in our approximation KID << 1. 

1 
-I 

0 650 1300 1950 2600 
t (t.u.) 

Figurr 1. Time evolution of the velocity of a detonation wave in the limit KID << 1 for 
various values of the initial velocity. The theoretical velocity of the stable detonation speed is 
ur = 1.414 A TU-', and the initial velocity has been varied from U = 1.0 to U = 1.6. The arrows 
indicate the times at which the m i e n t s  emitted by the initid condition have been eliminated. 

3.2. General case 

Although these results are interesting they do not really describe the interplay of the chemical 
reaction and shock in the detonation because, in order to allow analytical calculations, 
they have been obtained with the assumption KID (< 1 which means that the reaction 
is dominated by shock-induced dissociations. More interesting properties can be found if 
one drops this assumption, but we have to rely completely on numerical calculations. The 
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61' -I 
I .  i u.=1.01 I 
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0 1400 2800 4200 5600 
t (t.u.) 

F i y r e  2. Time evolution of the energy of a domain of 100 cells containing the shock and 
reaction frons and propagating with them. 

analytical results are only used to derive approximate initial conditions for the numerical 
studies in which we observe the sincture of the detonation wave which emerges from 
these initial conditions. We have performed a series of numerical calculations with 
K = 1.0 TU-' (a value 100 times larger than before) and various values of D in the 
range 0.125 g D g 1.0 TU-' so that, now, the chemical kinetics and the shock-induced 
reaction play similar roles in the detonation process. For each value of D, several values 
of the initial velocity U have been tested. Figure 3 summarizes the results. 

. .- 
A *  
Y .  

. . . . . . 

0 500 1000 I500 2000 
t (t.U.) 

Figure 3. Time evolution of the energy of the detonation front for K = 1 TU-' and different 
values of D .  The dotted line indicates the energy threshold for the initiation of a stable 
detonation. 

When D is too small (D c 0.4 w-'), the coupling between the shock and the chemical 
reaction is not sufficient to maintain a steady detonation, whatever the initial velocity. In 
this case the compound is not an explosive material. Any detonation that could be initiated 
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by a very strong shock dies out. For larger D there is a minimal initial velocity to create 
a steady detonation. We recover here the existence of a detonation threshold observed in 
experiments and in numerical calculations. If U is below the threshold, the reaction lags 
behind the shock and finally stops propagating, and then a simple shock wave subsists. The 
thresholds can be expressed as a minimum energy in the domain around the shock, and it 
is shown as a dotted line in figure 3. 

When the initial condition is over this threshold, a steady detonation is observed, but 
it is interesting to notice that, when D varies, we find two well defined detonation regimes 
instead of a continuous variation of the properties of the detonation as one could have 
expected from a continuous variation of D .  Figure 3 shows that, when D increases over 
the value D = 0.60 TU-', the detonation switches from a low-energy and low-speed regime 
to a high-energy high-speed regime. This is an unexpected result since nothing is built 
into the model to generate such a behaviour, and it  is particularly interesting because 
the same property was found in our last molecular dynamics results with an improved 
model designed to study the role of crystal inhomogeneities [SI. In these simulations of a 
shock-induced detonation in a homogeneous sample, we found two very different detonation 
regimes depending on the characteristics of the impact. For a 'slow impact' during which 
the average acceleration of the shocked atoms is below some threshold A,, the detonation 
propagates with a speed of about 7.5 km s-' which is a characteristic of the material and 
not of the initial impact. We called this regime the slow-detonation regime. A very fast 
impact generates a steady detonation which propagates with an extremely high speed of 
about 23 km s-'. We called this regime the fast-detonation regime. The slow- and fast- 
detonation regimes are qualitatively very different. In the fast regime, the induction zone 
which separates the shock front from the reaction front is very narrow (one or two cells 
only) and the crystal structure is still rather well preserved in the reaction zone so that the 
molecular dissociations followed by the energy release occur in a coherent manner close to 
the shock front. Only a small part of the chemical energy is lost in disordered motions that 
do not sustain the detonation. This explains the ex@emely high detonation speed which is 
however a characteristic of the material because the same speed is obtained for all impacts 
exceeding the threshold A,. The induction zone is much bigger in the slow detonation 
regime than in the fast regime. Moreover, in the reaction zone of the slow regime, the 
crystal structure is so distorted that the molecules are randomly oriented. Thus the energy 
release occurs in an incoherent way which is not as efficient as in the fast regime to sustain 
the propagation of the shock. 

Although there is not a direct connection between the two-dimensional molecular 
dynamics simulations and our one-dimensional approach, it is remarkable to recover the 
existence of the two detonation regimes from a simple model. Here the separation between 
the two regimes is obtained by changing D, i.e. the coupling between the shock and 
the reaction rather than the amplitude of the initial shock as in the molecular dynamics 
simulations. This difference is due to the nature of the initial condition that we use in the 
one-dimensional model. Instead of an initiation by a shock at one end of the lattice which 
allows the system to adjust itself to the steady detonation state, we impose an initial condition 
which derives from an approximate analytical solution that puts more constraints on the 
initial state because it is applied to the whole system. However the similarity between the 
molecular dynamics simulations and the one-dimensional model is strong because the small 
distance between the shock and reaction fronts found in the fast regime of the molecular 
dynamics simulations is associated with a strong coupling between the two fronts, which 
corresponds to the large-D case in the one-dimensional model, while the inefficient energy 
transfer between the shock and the reaction in the slow regime corresponds to a small D 
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value in the model. 
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4. Conclusion 

The model that we have presented here has been specially adapted to the case of solid 
phase detonations, and therefore it is fundamentally different from the usual models for 
gases or fluids. The mechanical part considers a lattice which is described by a hyperbolic 
equation, which includes the non-linearities which are excited in the high-speed shock wave 
of a detonation, rather than by an equation for heat diffision or a hydrodynamic equation. 
Although the continuum limit is used in the analytical calculations, the full discreteness is 
conserved in the numerical treatment of the model. This aspect is important because all the 
molecular dynamics simulations [Z, 3,541 although they have used extremely different 
models from simple atom-and-springs systems to sophisticated three-body potentials to 
reproduce accurately the chemical reactions, have concluded that the detonation front is 
extremely narrow on the molecular scale. In the chemical part of our model, the diffusion 
of the species has been removed since it does not occur appreciably in a solid, and replaced 
by a coupling with the atomic displacements caused by the shock. 

In spite of its simplicity, the model reproduces the general properties of a detonation like 
the existence of a characteristic speed or a detonation threshold. Moreover it is interesting 
to notice that it gives also a non-trivial result found in molecular dynamics simulations: the 
existence of a fast high-energy and of a slow low-energy regime for the detonation. Due 
to the fundamental difference between the two approaches, it is hard to believe that this is 
only a coincidence. Certainly these two regimes deserve further investigations, from both 
the experimental and the theoretical points of view. 
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